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ABSTRACT 

In th i s  pa p e r  we prove t h a t  for 0 < p, q < 1 the  real F-spaces  L~[0,1] 

a n d  lp are  no t  un i formly  homeomorph ic .  T h e  par t i cu la r  case p = q = 1 

is d u e  to Enflo a n d  our  work is mot iva ted  by his .  

1. In t roduc t ion  

It was proved by Enflo (unpublished) that Lz [0,1] and £z are not uniformly home- 

omorphie. An account of Enflo's proof can be found in Benyamini's expository 

paper [1]. As with many results in the Uniform Theory, Enflo's proof used the 

following basic lemma: 

A uniformly continuous map f from a metrically convex mettle space (M1, pl) 

into a metric space (M2,p2) satisfies a Lipschitz condition of order 1 for large 

distances (i.e., given/f > 0, there is a constant F(/0 so that p2(f(z), f(y)) < 
F(6)pI(x, y) whenever pz(x, y) > ~). 

Note that a metric space (M, p) is said to be metr ical ly convex if given points 
1 x x # Y in M we can always find a point z in M such that p(z, z) = ~p( , V) = 

p(z, Y). Such a point z is called a metr ic  midpoint  between x and Y in (M, p). 

In modifying Enflo's original argument we encounter an obstacle that relates 

to our intended use of the stated basic lemma. The problem is that in the 
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setting 0 < p < 1 the real F-space £n, with its usual metric d ( ie., for z = (xj)  

and 1/ = (~/j) in £p, d(z,~/) := ~ ° =  I lzj - !JjIP), is not metrically convex. So 

the basic lemma doesn't immediately apply. Indeed, uniforraly continuous maps 

f : (£p, d) --* (M, p) satisfy, in general, only Lipschitz conditions of order 1/p 

for large distances, a statement too weak for our purposes. We deal with this 

shortfall in the next section by introducing a uniformly equivalent remetrisation 

of £p that lends itself to an argument along Enflo's original lines. 

It is worth noting that the unit balls of the spaces appearing in our abstract 

are uniformly homeomorphic. This follows easily from estimates in Mazur's 1929 

Studia paper [2]. 

Some of the details in the proof of Theorem 4 are analogous to the original 

arguments of Enflo. They are included not only for completeness but  also because 

[1] is not a regular publication and may be hard to obtain. 

Throughout 0 < p, q < 1 and d denotes the usual metric for both Lq[0,1] and 

2. Lemmas and Main Result 

We begin by remetrising £p according to the formula 

where 

o o  

d l (X ,y )  : =   (Ixi - vii) ;  
j-----1 

= ( x j ) ,  y = (u j )  in tp,  

t, if ~ > 1, : =  
if, if 0 < ~ < 1 .  

This metric gives the same uniform structure as the usual metric d on ~p because 

dx(z, y) = d(z, y) whenever d(z, y) _< 1. 
It is useful to note that that dl can also be realised abstractly in a way that 

sometimes aides our intuition. A 1-chaln between points z and y in lp is a finite 

set of points 

z = z 0 , z l , . . .  ,zn = y in ~p such that d (z j , z j+ l )  _< 1 for j = O, 1 , . . .  ,n  - 1. The 

a-length of this 1-chain is the quantity 

j--0 
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An easy (but tedious) argument establishes that dl(x, y) equals the infimum of 

the d-lengths of the 1-chains between x and y. 

An ad hoc explanation (of the virtues) of the dl metric is that it convexities 

~p for large distances (without altering the uniform structure). Precisely what is 

meant will become clear in the proof of our first lemma. 

LEMMA 1: Suppose that (M,p) is a metric space emd that f : ~p --* (M,p )  is a 

uniform/y continuous map. Then, relative to the dl metric, f satisfies a Lipschitz 

condition of order 1 for large distances (> 2). In other words: given 6 > 2, there 

is a constant F(6) such that 

p ( f (x ) ,  f ( y ) )  <_ F(g)dl(x ,  y) whenever dl(x,  y) >_ 6. 

Proof: Let 6 > 2 be given. Then there is a constant M so that p(f(a) ,  f (b))  < M 

whenever dl(a,b) < 6. Indeed, by the uniform continuity of f there is a 61 so 

that dl (x ,y )  < 61 implies that p ( f ( x ) , f ( y ) )  < 1. Now divide the interval [a, b] 

into M equal parts a = a0 < .." < aM = b, where d(ai,ai+l) < 61, and M < 

2(6/61) 1/p. Then p( f (a ) , f (b ) )  < E M ~  1 p ( f (a i ) , f (a i+ , ) )  < M.  

Let x and y be given points in ~p with dl(x ,y)  >_ 6. Let m be the largest 

integer such that m6 <_ dl ( x, y). We may choose a 1-chain x = xo, xl , . . . , xn = y 

with e (xo ,x l , . . .  , z , )  < (m + 1)6. 

Since 1 < ~ it follows that we may choose integers 0 = k0 < kl < . . .  < kt = n 

such that 

_< e(xkw,xki+l, . . . ,xkj+,)  _< 6 for j = 0 , 1 , . . . , l - -  2, 

and 

0 < ~(zk,_, ,xk,_,+l, . . .  ,zk,) < & 

Notice that dl(xki ,  xkj+~) <_ $ for j = 0, 1 , . . . ,  I - 1, az~d also that 

( l -  I)~ < g(xo,x1,...,x,) < (m+ 1)6 

from whence it follows that l < 5m (because m >_ 1). Thus 

1-1 

p(f(x), f(y)) < Zp(f(xk i), f(xkj+t)) 
j=o 

<_ IM 
< 5mM. 
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Therfore 
5M 

P(f(z), f(Y)) <_ T d, (z, y) 

which completes the proof. 1 

Given points a and b in ~v and 0 < e < ¼ we define the set 

1 - 4 e  b)<dl (a ,v ) ,d l (b ,v )< l + 4 e  V~(a,b) := {v E ~v l - -~ -d l (a ,  - 2 d,(a,b)} 

of all-almost me t r i c  m idpo in t s  between a rind b. Using the closed formula for 

dl it is routine to check 

LEMMA 2: Given points a and b in £v, V~(a, b) is contained in tile set [a, b] + 

B4~a~(a,b) where [a, b] is the compact lattice interval of those points in £v whose 

coordinates lie between the corresponding coordinates of a and b. 

LEMMA 3: Given points x and y in Lq[O, 1] there exists a sequence (x,,) in 

Lq[0, 1] of metric midpoints between x and y with the property that d(xi, xk) = 

½d(z, y) whenever j ~¢ k. 

Proof: We only indicate the essential idea of the construction (leaving the 

straightforward inductive details out of this paper). 

By a translation we may assmne that x _ 0. It is a standard fact that the 

function 
P 

F(s) := I ly(t)l pdt 
st0 ,s] 

is continuous on [0,1] and, obviously, r is nmnotone with r (0)  = 0 and F(1) = 

Choosing a l  E (0, 1) such that F(~1) = ½d(y, 0) we set 

{y  on 
zl -= 0 otherwise. 

Choosing a2 E (0,1) such that F(a2)  = ~d(y ,0)  and a3 E (c¢1,1) such that 

r ( a a ) -  r ( a l ) =  ~d(y,O) we set 

{y  on u 
x2 = 0 otherwise. 

It is immediate that d(x~, x2) = ld(y, 0). The construction now goes through in 

the obvious fashion. Notice that if y = 1 then x,, = (1 + rn)/2 where rl ,  r2 , . . .  

are the non-trivial Rademacher functions on [0, 1]. I 
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THEOREM 4: The real F-spaces Lq[O, 1] and ~p are not uniformly homeomorphic. 

Proof: Assume to the contary that f : Lq ~ gp is a uniform homeonmrphism. 

f - 1  is uniformly continuous so there is a constant 7 > 0 such that d(x, y) <_ 
7 whenever dl( f(x) , f (y))  _< 2. Now if d(x,y) > 7 then it nmst be that 

dl( f(x) , f (y))  > 2 and so by Lemma 1 (applied to f - l )  there must be an L > 0 

such that  d(x,y) < Ldl( f(x) , f (y)) .  In other words, we have constants 7 > 0 

and L > 0 such that 

d(x,y) <_ max{7,Ldl( f(x) , f (y))  } for all points x and y in Lq. 

As Lq is metrically convex we know that f satisfies a Lipschitz condition of 

order I for large distances. Hence, given 8 > 0, there is a smallest constant K(6) 

such that d, (f(x), f(y)) < K(6)d(x, y) whenever d(z, y) > 6. 
K(6) decreases as ~ increases so we may set K := lim~.-.~K(~). 

Given 0 < e < ¼ we can choose 6 > 7 so that K(6) < (1 + e)K. 
The minimality of K(26) allows us to fix points x and y in Lq with d(x, y) >__ 26 

and 

(1) d,(f(x),  f(y)) >_ (1 - e)K(26)d(x, y) >_ (1 - e)Kd(x, y). 

We set U := {u e Lql d(x,u) = ½d(x,y) = d(y,u)}, the set of metric midpoints 

between x and y in Lq, and we observe that f(U) C V,(f(x) , f (y))  (notation as 

before). Indeed, if u E U, then 

f(u)) < K(6)d(z, u) 
= ½K(6)d(x, 
< ½(1 + ,)gd(x, u) 
< ~ d , ( f ( x ) , f ( y ) )  by (1). 

!_+_~.s < 2 ¢,l(f(x),f(y)), 

this last inequality being a result of having 0 < e < 1/4. The remaining details 

of the containment f(U) C_ V~(f(x), f(y)) are similar and are omitted from this 

paper. 

By Lemma 3, U contains an infinite sequence (Xn) such that d(xj,xk) = 
½d(x, y) whenever j # k and, by Lemma 2 and the above containment, f(U) C_ 
[f(z), f(y)] + B4,d,(f(zr, f(y)). The compactness of the lattice interval tells us that 

there are distinct indices j and k such that d~(f(xj), f(xk)) < lOed~(f(x), f(y)), 
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and as d(xj, xh) = ~d(x, y) >_ 5 > 7 we obtain: 

= 2d(x  i ,  xk) 
<_ 2Ldl(f(xj),  f (xk )) 
<_ 20eLdl(f(x), f(y)) 
< 20 LK(6)d(x, y) 
_< 20eL(1 + e)Kd(z, y) 

So I _< 20eL(1 + e)K and a contradiction is found letting e ---} 0. | 

ACKNOWLEDGEMENT: I would like to thank the following people: Professor P. 

Enflo for suggesting and supervising this project, Professor A. Tonge for multiple 

mathematical discussions, the referee who made very helpful and illuminating 

comments, and Mrs S. Sommers for typing the first draft of this paper. 

References  

[1] Y. Benyamini, The Uniform Classilicatlon of Banach Spa~es, Longhorn Notes, Uni- 

versity of Texas, Austin, 1984-85, pp. 15-39. 

[2] S. Mazur, Une Remarque Sur l'homdomorphismie des Champs Fonctionnels, Studia 
Math. I (1929), 83-85. 


